
Abstract. In quantum chemistry, supersymmetry, shape
invariance and intertwining techniques are used to deter-
mine the class of potentials that are solvable as well as to
find their isospectral and generalized partners. To do that,
it is necessary to have the corresponding Witten super-
potential defined by W ðxÞ ¼ w0=w where w is a particular
wavefunction of the Hamiltonian under study. In this
work, we propose an alternativeway to express theWitten
superpotential in terms of reciprocal wavefunctions.
Thus, when this newdefinition ofW ðxÞ is used as an ansatz
in the Riccati equation involved, one is led to a potential
identical to that resulting from the use of the standard
Darboux transform, which means that it is possibly the
generalization of it. Moreover, the generalization of the
new Witten superpotential gives rise to a new generalized
isospectral potential other than that obtained from the
generalized Darboux transform. As an example of an
application of the proposed approach, we found the new
generalized isospectral potentials that correspond to the
one-dimensional free particle, harmonic oscillator and
Morse potential models. Also, owing to the fact that the
proposed method is general our proposal can be used
straightforwardly to obtain new, exactly solvable poten-
tials aswell as to find their isospectral generalized partners
which can be used advantageously in the modeling of
important quantum chemical applications.

Keywords: Supersymmetry – Isospectral Hamiltonians –
Darboux Transforms

1 Introduction

The physical and chemical microscopic properties of a
system, at the quantum level, are well characterized

through the Schrödinger equation [1]. Consequently, the
usefulness of such a second-order differential equation
depends on the degree of solvability that it has in
relation to the potential involved [2]. That is, the study
of exactly solvable quantum mechanical problems is a
very interesting subject which has attracted increasing
interest in theoretical sciences [3, 4]. Actually, to find
solvable quantum problems the explicit knowledge of
the potential under study becomes necessary in order to
determine the most appropriate procedure, analytical or
algebraic, of finding the corresponding eigenvalues [5].
The same occurs with standard isospectral potentials
where the Riccati equation involved can be solved for a
particular potential having the property of shape
invariance [6]. Also, another way of obtaining new
exactly solvable potentials consists of looking for pairs
of quantum Hamiltonians coupled supersymmetrically
by an intertwining operator [7, 14] or, as proposed
recently by Morales et al. [8], to use an ansatz as a
particular solution of the corresponding Riccati equa-
tion with the purpose to identify the potential under
study. In consequence, owing to the fact that this
start corresponds to the Witten [9] superpotential
W ðxÞ ¼ w0=w; where w is a particular wavefunction of
the Schrödinger equation involved, the wavefunctions
and W ðxÞ can be generalized giving way to new
isospectral potentials which are partners of the former
potential. With all these elements taken into consider-
ation, in the present work we show that the Witten
superpotential can also be given in terms of u ¼ 1

w, which
permits us to obtain new generalized Witten superpo-
tentials as well as new generalized wavefunctions which
are involved with new generalized isospectral potentials.
For that, in the next section we consider the generali-
zation of those isospectral potentials associated with
solvable potentials identified by means of the Witten
superpotential, in terms of w and u; as a particular
solution of the Riccati equation concerned. Next, in
order to show the usefulness of the proposed approach
in the search for new generalized isospectral potentials,
we consider explicitly the application of our proposal to
the case of the one-dimensional free particle, harmonic
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oscillator and Morse potential models. However, owing
to the fact that the proposed method is general it can be
used directly to obtain new exactly solvable potentials as
well as to find their isospectral and generalized partners
which can be useful in the treatment of different
quantum chemical applications.

2 Exactly solvable partner isospectral potentials

The time-independent Schrödinger equation for one-
dimensional potentials, V ðxÞ, is given by

�w00nðxÞ þ V ðxÞwnðxÞ ¼ knwnðxÞ : ð1Þ
By assuming that w0ðxÞ is a particular solution of Eq. (1)
it follows that the Witten superpotential [9]

W0ðxÞ ¼ w00ðxÞ=w0ðxÞ ; ð2Þ
satisfies

W 2
0 ðxÞ þ W 0

0ðxÞ ¼
w000ðxÞ
w0ðxÞ

; ð3Þ

where

w0ðxÞ ¼ exp

Z x

W0ðxÞdx
� �

: ð4Þ

The Schrödinger equation for w0ðxÞ is then
�w000ðxÞ þ V ðxÞw0ðxÞ ¼ k0w0ðxÞ ; ð5Þ
where k0 is the so-called factorization energy and from
which we obtain trivially

w000ðxÞ
w0ðxÞ

¼ V ðxÞ � k0 : ð6Þ

That is, by using Eq. (6) in Eq. (3) it is found that the
Witten superpotential satisfies the Riccati equation

V ðxÞ ¼ V þðxÞ ¼ W 2
0 ðxÞ þ W 0

0ðxÞ þ k0 ; ð7Þ
where we have renamed V ðxÞ in order to differentiate it
from the partner supersymmetric potential V �ðxÞ that
we obtain next. For that purpose, we note that the
Witten superpotential given in Eq. (2) can be rewritten
as

W0ðxÞ ¼ �
d

dx
ln½u0ðxÞ� ; ð8Þ

where u0 ¼ 1
w0
, indicating that

u0ðxÞ ¼ exp �
Z x

W0ðxÞdx
� �

: ð9Þ

Thus, following a similar procedure to the one given
previously for the potential V þðxÞ, in this case the
Schrödinger equation for u0 comes from

W 2
0 ðxÞ � W 0

0ðxÞ ¼
u000ðxÞ
u0ðxÞ

; ð10Þ

on condition that we have the partner supersymmetric
potential

V �ðxÞ ¼ W 2
0 ðxÞ � W 0

0ðxÞ þ k0 ; ð11Þ

which means that

u000ðxÞ
u0ðxÞ

¼ V �ðxÞ � k0 : ð12Þ

That is,

V �ðxÞ ¼ V þðxÞ � 2W 0
0ðxÞ ; ð13Þ

therefore

W 0
0ðxÞ ¼

1

2
½V þðxÞ � V �ðxÞ� ; ð14Þ

and

W 2
0 ðxÞ ¼

1

2
½V þðxÞ þ V �ðxÞ� � k0 : ð15Þ

At this point, two facts should be noted: first,
Eq. (13) is the equivalent to the Gendenshtein [10] con-
dition of shape invariance for solvable one-dimensional
potential models; and second, the potential V �ðxÞ mat-
ches with the so-called Darboux potential which comes
from the standard Darboux transform [11].

Concerning the solutions of the Riccati equations
involved, it becomes clear that Eqs. (7) and (11) have the
same particular solution, W0ðxÞ, although a different
general solution exists for each potential. That is, the
general solution for the potential V þðxÞ of the Riccati
Eq. (7) is given by

W þ
g ðxÞ ¼ W0ðxÞ þ

b
qðxÞ ; ð16Þ

where

qðxÞ ¼ e2
R x

W0ðxÞdx cþ b
Z x

e�2
R x

W0ðxÞdxdx
� �

; ð17Þ

with c and b integration constants and where we have
used the lower index g to indicate generalized. Similarly,
the general solution for the partner supersymmetric
potential V �ðxÞ of the Riccati Eq. (11) is given by

W �
g ðxÞ ¼ W0ðxÞ þ

a
gðxÞ ; ð18Þ

where

gðxÞ ¼ e�2
R x

W0ðxÞdx b� a
Z x

e2
R x

W0ðxÞdxdx
� �

; ð19Þ

with b and a integration constants. Thus, owing to the
fact that Eq. (16) can be rewritten as

W þ
g ðxÞ ¼ W0ðxÞ þ

d

dx
ln cþ b

Z x

e�2
R x

W0ðxÞdxdx
� �

;

ð20Þ
the substitution of W0ðxÞ; given in Eq. (2), leads to

W þ
g ðxÞ ¼

d

dx
lnw0ðxÞ

þ d

dx
ln cþ b

Z x

e�
R x

W0ðxÞdx
� �2

dx
� �

¼ d

dx
lnwg0

ðxÞ ; ð21Þ
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where

wg0
ðxÞ ¼ w0ðxÞ cþ b

Z x dx

w2
0ðxÞ

 !
: ð22Þ

It is important to stress that this last relationship is a
second solution of the Schrödinger equation for the
former potential V þðxÞ, in good agreement with Korolev
[12]. Similarly, W �

g ðxÞ is now

W �
g ðxÞ ¼ W0ðxÞ �

d

dx
ln b� a

Z x

e2
R x

W0ðxÞdxdx
� �

ð23Þ

or explicitly, after using Eq. (8),

W �
g ðxÞ ¼ �

d

dx
lnu0ðxÞ �

d

dx
ln b� a

Z x dx
u2
0

� �

¼� d

dx
lnug0

ðxÞ ; ð24Þ

where

ug0
ðxÞ ¼ u0ðxÞ b� a

Z x dx
u2
0ðxÞ

� �
: ð25Þ

As before, in this case ug0
ðxÞ is the second solution

of the Schrödinger equation where the generalized
potential

V �g ðxÞ ¼ V �ðxÞ ¼ V þðxÞ � 2W 0
0ðxÞ ð26Þ

is an isospectral partner of the former potential V þðxÞ.
Finally, it is important to underline the existence of

the reciprocal wavefunctions

vg0ðxÞ ¼
1

wg0
ðxÞ ð27Þ

and

hg0ðxÞ ¼
1

ug0
ðxÞ ð28Þ

with properties

W þ
g ðxÞ ¼ �

v0g0ðxÞ
vg0ðxÞ

; W þ
g ðxÞ

2 �
dW þ

g ðxÞ
dx

¼
v00g0ðxÞ
vg0ðxÞ

ð29Þ

and

W �
g ðxÞ ¼

h0g0ðxÞ
hg0ðxÞ

; W �
g ðxÞ

2 þ
dW �

g ðxÞ
dx

¼
h00g0ðxÞ
hg0ðxÞ

: ð30Þ

Similarly to the previous cases, the vg0ðxÞ and hg0ðxÞ
functions are solutions of the Schrödinger equation in-
volved with the isospectral potentials

VþðxÞ ¼W þ
g ðxÞ

2 �
dW þ

g ðxÞ
dx

þ k0

¼V þðxÞ � 2
dW þ

g ðxÞ
dx

; ð31Þ

and

V�ðxÞ ¼ W �
g ðxÞ

2 þ
dW �

g ðxÞ
dx

þ k0

¼ V �ðxÞ þ 2
dW �

g ðxÞ
dx

: ð32Þ

It should be observed that VþðxÞ is identical to the
generalized Darboux potential [13]:

VþðxÞ ¼ V �ðxÞ � 2
d

dx
b

qðxÞ

� �
; ð33Þ

fulfilling the Schrödinger equation

�v00g0ðxÞ þVþðxÞvg0ðxÞ ¼ k0vg0ðxÞ ; ð34Þ

where

vg0ðxÞ ¼
u0ðxÞ

cþ b
R x u2

0ðxÞdx
: ð35Þ

Similarly, the new potential V�ðxÞ satisfies the Schrö-
dinger equation

�h00g0ðxÞ þV�ðxÞhg0ðxÞ ¼ k0hg0ðxÞ ð36Þ

according to

hg0ðxÞ ¼
w0ðxÞ

b� a
R x w2

0ðxÞdx
: ð37Þ

In short, we have four different isospectral potentials:
the former, the Darboux potential, the generalized
Darboux potential and another new, generalized po-
tential. Also, it is worth mentioning that Roy and
Roychoudhury [14] constructed a sequence of super-
symmetric quantum mechanical Hamiltonians leading
to the isospectral potentials that come from our Eq. (3).
However, they did not obtain the new isospectral
potentials derived from our Eq. (10) owing to the fact
that they did not solve for the general solution of the
corresponding Riccati equation. From a general point of
view, in Table 1 we have shown our proposed algorithm
to find the aforementioned four different isospectral
potentials. On the other hand, from a particular situa-
tion, in the next section we are going to apply the
proposed method for obtaining those new isospectral
potentials associated with some standard one-dimen-
sional potential models.

3 New generalized isospectral potentials

As a useful application of the proposed approach we
will obtain next new generalized isospectral potentials
that are the partners of the standard one-dimensional
free particle, harmonic oscillator and Morse potential
models.

3.1 One-dimensional free particle potential

The one-dimensional free particle potential is probably
the simplest potential that can be found in quantum
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studies. In this work, this potential comes from the
simplest choice of the Witten superpotential W0ðxÞ ¼ ia;
where a � R, as a particular solution of the correspond-
ing Riccati relationship. In fact, this particular solution
of Eqs. (7) and (11) indicates that V þ ¼ V � ¼ 0 on
condition that we have k0 ¼ a2. Obviously, the corre-
sponding wavefunction of the Schrödinger equation is in
this case, according to Eq. (4), given by

w0 ¼ expðiaxÞ : ð38Þ
In order to generalize this wavefunction as well as the
corresponding Witten superpotential, we use Eqs. (22)
and (21) respectively. Thus, after some cumbersome
algebra we obtain

wg0
ðxÞ ¼

b
ffiffiffi
g
p

a
sinðax� i ln

ffiffiffi
g
p Þ ; ð39Þ

where g ¼ 2iac=b, and

W þ
g ðxÞ ¼ a cotðax� i ln

ffiffiffi
g
p Þ : ð40Þ

Consequently, the associated generalized isospectral
potential becomes

VþðxÞ ¼ 2a2 csc2ðax� i ln
ffiffiffi
g
p Þ ð41Þ

with the wavefunction given by

vg0ðxÞ ¼
a

b
ffiffiffi
g
p cscðax� i ln

ffiffiffi
g
p Þ : ð42Þ

As can be seen, potential VþðxÞ given in Eq. (41)
contains some particular cases depending on the choice
of c and b. For example, in the case of c ¼ 1=2 and
b ¼ �ia, Eq. (39) can be rewritten as

wg0
ðxÞ ¼ cosðaxÞ ; ð43Þ

for which the Witten superpotential becomes

W þ
g ðxÞ ¼ �a tanðaxÞ ; ð44Þ

leading to the new generalized isospectral potential

VþðxÞ ¼ 2a2 sec2ðaxÞ ð45Þ
with wavefunction

vg0ðxÞ ¼ secðaxÞ : ð46Þ
Similarly, when c ¼ ð2iÞ�1 and b ¼ a are selected one has

wg0
ðxÞ ¼ sinðaxÞ ; ð47Þ

with Witten superpotential given by

W þ
g ðxÞ ¼ a cotðaxÞ ; ð48Þ

such that the corresponding generalized isospectral
potential

VþðxÞ ¼ 2a2 csc2ðaxÞ ð49Þ
has the wavefunction

vg0ðxÞ ¼ cscðaxÞ : ð50Þ
On the other hand, for the reciprocal wavefunction

u0ðxÞ ¼ exp �iaxð Þ ; ð51Þ
one has the corresponding generalized wavefunction

ug0
ðxÞ ¼ a

ffiffi
r
p

ia
cosðaxþ i ln

ffiffi
r
p
Þ ; ð52Þ

where r ¼ 2iab=a; and the generalized Witten super-
potential

W �
g ðxÞ ¼ a tanðaxþ i ln

ffiffi
r
p
Þ : ð53Þ

Thus, the new generalized isospectral potential for the
free particle potential model will be

V�ðxÞ ¼ 2a2 sec2ðaxþ i ln
ffiffi
r
p
Þ ; ð54Þ

with the wavefunction given by

hg0ðxÞ ¼
ia

a
ffiffi
r
p secðaxþ i ln

ffiffi
r
p
Þ : ð55Þ

Similarly to the previous case, the potential V�ðxÞ
contains some particular cases depending on the choice
of b and a. In fact, when b ¼ 1=2 and a ¼ ia, Eq. (52)
can be rewritten as

ug0
ðxÞ ¼ cosðaxÞ ; ð56Þ

for which the corresponding Witten superpotential
becomes

W �
g ðxÞ ¼ a tanðaxÞ ð57Þ

leading to the new generalized isospectral potential

V�ðxÞ ¼ 2a2 sec2ðaxÞ ð58Þ
with wave function

hg0ðxÞ ¼ secðaxÞ : ð59Þ
Finally, in the case b ¼ �ð2iÞ�1 and a ¼ a, Eq. (52)
becomes

Table 1. Algorithm to obtain
four different isospectral
potentials

Witten superpotentials Wavefunctions Potential partners–Riccati equations

Wo xð Þ ¼ W0oðxÞ
WoðxÞ Wo V þðxÞ ¼ W 0

oðxÞ þ W 2
o ðxÞ þ ko

W þ
g ðxÞ ¼

W0go ðxÞ
Wgo ðxÞ

Wgo ¼ Wo cþ b
R

dx
W2

o

� �
V þg ðxÞ ¼ W þ0

g ðxÞ þ W þ2

g ðxÞ þ ko ¼ V þðxÞ
W þ

g ðxÞ ¼ �
v0ðxÞ
vðxÞ v ¼ 1

Wgo
Vþ

g ðxÞ ¼ �W þ0
g ðxÞ þ W þ2 ðxÞ þ ko

WoðxÞ ¼ � u0oðxÞ
uoðxÞ

uo ¼ 1
Wo

V �ðxÞ ¼ �W 0
oðxÞ þ W 2

o ðxÞ þ ko

W �
g ðxÞ ¼ �

u0go ðxÞ
ugo ðxÞ

ugo ¼ uo b� a
R

dx
u2
o

� �
V �g ðxÞ ¼ V þðxÞ � 2W 0

oðxÞ ¼ V �ðxÞ

W �
g ¼

h0ðxÞ
hðxÞ h ¼ 1

ugo
V�

g ðxÞ ¼ W �0
g ðxÞ þ W �2

g ðxÞ þ ko
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ug0
ðxÞ ¼ sinðaxÞ ; ð60Þ

with Witten superpotential given by

W �
g ðxÞ ¼ �a cotðaxÞ : ð61Þ

Thus, the corresponding generalized isospectral poten-
tial

V�ðxÞ ¼ 2a2 csc2ðaxÞ ð62Þ
has the wavefunction

hg0ðxÞ ¼ cscðaxÞ : ð63Þ
In any case, it will be clear that other new generalized

free particle potentials can be obtained from other
choices of c and b; or b and a, for which, a potential like
this, it will be considered as a family of isospectral
potentials. For example, in Fig. 1 we have shown the
free particle isospectral potentials V �ðxÞ;V�ðxÞ and
VþðxÞ; as well as the former V þðxÞ: Notice that we have
used a ¼ 1 and V �ðxÞ 6¼ V þðxÞ 6¼ 0:

3.2 One-dimensional harmonic oscillator potential

The one-dimensional harmonic oscillator potential can
be identified when we use the Witten superpotential
W0ðxÞ ¼ �ax; where a is a constant, as particular
solution of the Riccati Eq. (7). In fact, this ansatz leads
to

V þðxÞ ¼ a2x2 ; ð64Þ
on the condition that we have k0 ¼ a: This potential has
wavefunctions

w0ðxÞ ¼ exp � a
2

x2
� �

ð65Þ

and

wg0
ðxÞ ¼ exp � a

2
x2

� �
cþ b

Z x

eax2dx
� �

: ð66Þ

Also, the use of Eq. (11) or Eq. (13) let us to find the
Darboux harmonic oscillator potential

V �ðxÞ ¼ V þðxÞ þ 2a ; ð67Þ

whose Schrödinger equation is satisfied by the wave-
functions

u0ðxÞ ¼ exp
a
2

x2
� �

ð68Þ

and

ug0
ðxÞ ¼ exp

a
2

x2
� �

b� a
Z x

e�ax2dx
� �

: ð69Þ

In the same way, in order to obtain the corresponding
generalized isospectral potentials it is necessary to use
the generalized Witten superpotentials

W þ
g ðxÞ ¼ �axþ beax2

cþ b
R x

eax2dx
ð70Þ

and

W �
g ðxÞ ¼ �axþ ae�ax2

b� a
R x

e�ax2dx
: ð71Þ

That is, from Eqs. (31) and (32) the corresponding
generalized harmonic oscillator potentials are

VþðxÞ ¼ a2x2 þ 2a� 2
d

dx
beax2

cþ b
R x

eax2dx

 !
; ð72Þ

which is a new generalized isospectral harmonic oscilla-
tor potential, and

V�ðxÞ ¼ a2x2 þ 2
d

dx
ae�ax2

b� a
R x

e�ax2dx

 !
; ð73Þ

which has been identified by Mielnik [6] as a new
isospectral potential with the harmonic oscillator spec-
trum. As already point out [6], the Mielnik’s potential
has no singularity if jbj >

R x
0 ae�ax2dx: Conver-

sely, the new isospectral potential given in Eq. (72) has
a singularity when c ¼ �b

R x
0 e

ax2dx as can be seen in
Fig. 2 where, we have included all the other harmonic
oscillator isospectral potentials. Finally, these potentials
VþðxÞ and V�ðxÞ have, respectively, the following
wavefunctions

vg0ðxÞ ¼
e
1
2ax2

cþ b
R x

eax2dx
ð74Þ

Fig. 1. Free particle isospectral potential partners. The potentials
V þðxÞ and V �ðxÞ are those obtained from Eqs. (45) and (62),
respectively, using a ¼ 1

Fig. 2. Harmonic oscillator isospectral potential partners. V þðxÞ is
from Eq. (64); V �ðxÞ is from Eq. (67). For the potentials V þðxÞ
and V �ðxÞ we used Eqs. (72) and (73), respectively, with the
parameters a ¼ 1; c ¼ b; b ¼ a and 0 as the lower integration limit
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and

hg0ðxÞ ¼
e�

1
2ax2

b� a
R x

e�ax2dx
: ð75Þ

3.3 Morse potential for s states

In order to identify the particular case of the standard
Morse potential, we propose as a particular solution of
the Riccati relationship, given in Eq. (7), the Witten
superpotential

W0ðxÞ ¼ Ae�ax � k ; ð76Þ
where A; a and k are arbitrary constants to be
determined. In fact, in this case one has

V þðxÞ ¼ A2 e�2ax � 2k þ a
A

� �
e�ax

� �
þ k2 þ k0 ; ð77Þ

for which we can choose A ¼ k þ a
2 and k0 ¼ �k2 in

order to have

V þðxÞ ¼ k þ a
2

� �2
e�2ax � 2e�ax
� 	

: ð78Þ

This potential is to be compared with the Morse
potential model

VMorseðxÞ ¼ D e�2ax � 2e�ax
� 	

; ð79Þ
in order to have k ¼

ffiffiffiffi
D
p
� a

2, where D is the depth of the
well. The Schrödinger equation for this potential has
wavefunctions

w0ðxÞ ¼ e
a
2�
ffiffiffi
D
pð Þx�

ffiffi
D
p

a e
�ax

; ð80Þ
as published elsewhere [15], and

wg0
ðxÞ ¼ e

a
2�
ffiffiffi
D
pð Þx�

ffiffi
D
p

a e
�ax

� cþ b
Z

dx

e�2ð
ffiffiffi
D
p
�a=2Þx�2

a

ffiffiffi
D
p

e�ax

� �
: ð81Þ

Furthermore, the corresponding Darboux potential is
then given by

V �ðxÞ ¼ D e�2ax � 2e�ax
� 	

þ 2a
ffiffiffiffi
D
p

e�ax ; ð82Þ
which is in good agreement with Drigo Filho [16] and
Morales et al. [13]. By the way, we want to point out
some misprints in Ref. [13]: the number 2 occurring in
the denominator of Eq. (70) should be deleted and k
appearing in Eq. (74) should be changed by 2k.

We note that potential V �ðxÞ fulfills a Schrödinger
equation with a wavefunction given by

u0ðxÞ ¼ e�
a
2�
ffiffiffi
D
pð Þxþ

ffiffi
D
p

a e
�ax ð83Þ

and

ug0
ðxÞ ¼ e�

a
2�
ffiffiffi
D
pð Þxþ

ffiffi
D
p

a e
�ax

� b� a
Z

dx

e�2ð
a
2�
ffiffiffi
D
p
Þxþ2

a

ffiffiffi
D
p

e�ax

� �
: ð84Þ

Similarly to the previous cases, in order to obtain the
generalized Morse potentials VþðxÞ and V�ðxÞ,

according to Eqs. (21) and (24) it is necessary to have the
generalized Witten superpotentials W þ

g ðxÞ and W �
g ðxÞ,

which are in this case given by
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Then, using Eqs. (31) and (32) we have the general-
ized Morse isospectral potentials
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and
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whose Hamiltonians follow from the wavefunctions
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and
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respectively. The former and the three Morse isospectral
potential families are shown in Fig. 3.

4 Concluding remarks

In the present work, we have proposed a method to
find solvable potentials as well as their new generalized

Fig. 3. Morse isospectral potential partners given by Eq. (79)
(a ¼ D ¼ 1), Eq. (82) (a ¼ 1, D ¼ 3), Eq. (87) (a ¼ 1, D ¼ 3,
c ¼ 20bÞ and Eq. (88) (a ¼ D ¼ 1, b ¼ a=2Þ using, as usual, ð0; xÞ
as integration limits
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isospectral partners. Instead of solving the Riccati
equation involved for a specific potential, as is usually
done, our proposal is based on the use of the standard
Witten superpotential as a particular solution in order
to identify the potential under study. Next, we found
the general solution of the Riccati equation leading to
the corresponding generalized isospectral potential.
Thus, with the aim to find new, generalized isospectral
potentials, we put the Witten superpotential in terms
of reciprocal wavefunctions. With this new repre-
sentation, the reciprocal Witten superpotential was
generalized, leading to the corresponding generalized
isospectral potential partners. Also, from the Witten
generalized superpotential we obtained the wavefunc-
tions that are solutions of the Schrödinger equation
involved. In short our proposal uses the following
algorithm: a standard Witten superpotential is used
to identify the former solvable potential, the ground-
state wavefunction and factorization energy, a gener-
alized Witten superpotential to get the Darboux
potential and corresponding wavefunction and a
generalized reciprocal Witten superpotential to obtain
new generalized isospectral potentials and wavefunc-
tions. The advantage of our proposal stems from the
fact that while other approaches are developed with
the purpose to solve the Riccati equation for a known
potential, in our case the standard and reciprocal
Witten superpotentials, which are used as an ansatz to
identify the solvable potential under consideration, can
be generalized in order to obtain generalized isospec-
tral potentials with their respective generalized wave
functions. As an example of the usefulness of the
proposed approach, we considered explicitly some
standard potentials with the objective to find the

corresponding generalized isospectral partners. How-
ever, our method is general and can be used straight-
forwardly for the generalization of other standard
solvable potentials as well as to find new solvable
potentials that can be used as models in different
quantum chemical applications.
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